Q.P. Code: 16HS611			
Reg.	No:		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year II Semester (R16) Supplementary Examinations Dec 2017 ENGINEERING MATHEMATICS-II (Common to All Branches)			
Time: 3 hoursMax. Marks: 60(Answer all Five Units 5 X 12 = 60 Marks)			
UNIT-I			
1	a.	Investigate for what values of λ and μ the simultaneous equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$; have (<i>i</i>) no solution (<i>ii</i>) a unique solution and (<i>iii</i>) an infinite number of solutions. 6M	[
	b.	Reduce the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -3 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ to normal form and hence find rank 6M	
		OR	
2		Reduce the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to the diagonal form 12 M	Л
UNIT-II			
3	а	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at	
		the point $(2, -1, 2)$ 6M	[
	b	Compute the line integral $\int_{C} y^2 dx - x^2 dy$ about the triangle whose vertices	-
		are $(1,0)$, $(0,1)$ and $(-1,0)$ 6M	[
4		State the Stoke's theorem and verify the Stoke's theorem for $F = (x^2 + y^2)i - 2xy j$ taken around the rectangle bounded by the lines	
		$x = \pm a, y = 0, y = b$ 12N	Λ

UNIT-III

5 a. If
$$f(x) = |\cos x|$$
, expand $f(x)$ as a Fourier series in $(-\pi, \pi)$.
b.
Prove that $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $-\pi < x < \pi$ using Fourier series.
6M
OR

a. Obtain Fourier series for the function $f(x) = \begin{cases} \pi x, & 0 \le x \le 1\\ \pi (2-x), 1 \le x \le 2 \end{cases}$ Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$ 8M

b. Express f(x) = x as a half-range sine series in 0 < x < 2.

UNIT-IV

Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, |x| < a \\ 0, |x| > a > 0 \end{cases}$. Hence show that

$$\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}.$$

OR

8

9

10

7

6

Find the cosine transform of (i) $e^{-ax} \cos ax$ and (ii) $e^{-ax} \sin ax$

12M

12M

UNIT-V

a. Solve by Method of separation of variables $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ 6M

b. Form the P.D.E by eliminating arbitrary function z = f(x+at) + g(x-at) 6M

OR

Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions

$$u(0, y) = u(l, y) = u(x, 0) = 0$$
 and $u(x, a) = \sin\left(\frac{n\pi x}{l}\right)$ 12M